Broad-Line Region and Black-hole Mass of Quasar PKS 0736+017

Shivangi Pandey Dr. Suvendu Rakshit 14th September, 2021

Crimean AGN Conference

"Galaxies with Active Nuclei on Scales from Black Hole to Host Galaxy"

arier

Central Engine and BLR: AGN

Credits: Erik Zackrisson based on Urry & Padovani+1995

- AGNs powered by SMBH at the center.
- Luminosity lies $10^{42} 10^{47}$ erg s⁻¹.
- Accretion disk.
- Broad line region (BLR).
- Dusty Torus.
- ✤ Narrow line region (NLR).
- Variable in the entire electromagnetic spectrum.

MASS OF BLACK HOLE

- The central engine is highly compact and unresolved even for low-z AGN and the majority of AGNs are at high redshift.
- The core outshines the host making the host galaxy difficult to observe.

Reverberation Mapping is one such technique.

Reverberation Mapping(RM):

"Size and structure of BLR can be obtained by observing the response of emission lines to continuum variations from the central source"

Assumptions of RM:

- I. The continuum emitting region is a point source.
- II. BLR clouds themselves occupy a small fraction of the total BLR volume.
- III. Emission line clouds respond instantaneously to the changes in the continuum.
- IV. The relationship between the observed line flux and continuum flux is simple, though not necessarily linear.

Pic:Peterson 1993

Reverberation Mapping(RM):

"Size and structure of BLR can be obtained by observing the response of emission lines to continuum variations from the central source"

$$M_{BH} = rac{f imes R_{BLR} (\Delta V)^2}{G}$$

Size-Luminosity Relation:

"Size and structure of BLR can be obtained by observing the response of emission lines to continuum variations from the central source"

Size-Luminosity Relation:

Source PKS 0736+017 and data:

Flat spectrum radio quasar of type blazar (100 MeV<E<100 GeV) (H.E.S.S.+2019), at z=0.189 (Ho & Kim 2009), hosted by giant elliptical galaxy (Kotilainen et al. 1998).
"Black hole mass, BLR size and it's geometry is unknown till now, having strong emission lines and availability of long term monitoring data"

Source PKS 0736+017 and data:

- → Optical V-band photometry and spectroscopic data from the Steward Observatory spectropolarimetric monitoring project, a support program for the Fermi Gamma-Ray Space Telescope, was used. Observations were carried out using the spectrophotometric instrument SPOL during Nov 2014 to May 2018.
- → Contributing around 130 spectra (4-5 spectra per month).
- The γ-ray light curve were collected from the publicly available database of the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope (Bhoomika+2021).

What could be its Black hole mass, BLR size measurement and locating in the size-luminosity plot?

Spectrum and light curves:

Light curve: Top to bottom(F(5100 Å) in erg cm⁻² s⁻¹ Å⁻¹, F(Hβ), F(Hɣ) in erg cm⁻² s⁻¹)

<u>Results</u>: Cross-Correlation results

Autocorrelation btw Continuum V-Band and Continuum Flux at 5100Å

<u>Results</u>: Cross-Correlation results

CCF btw Continuum V-Band and HY

<u>Results</u>: Cross-Correlation results

CCF btw Continuum V-Band and H β

<u>Results</u>: Javelin result

Javelin Result btw Continuum V-Band and Hβ

Javelin: Zu et al.(2011, 2013)

Results: Mean and RMS spectrum

Results: Mean and RMS spectrum

Spectrum	Туре	ΔV(km s⁻¹)
RMS	FWHM	$1807.96\substack{+181.10\\-184.40}$
RMS	σline	$1076.33\substack{+66.19\\-72.19}$
Mean	FWHM	$2094.61\substack{+208.66\\-235.08}$
Mean	σline	$\overline{1334.32^{+12}_{-123.92}}_{-123.92}$

f= 4.47(σ) , 1.12(FWHM) (Woo+2015)

Spectrum	Туре	ΔV(km s⁻¹)	M_{BH} ($ imes 10^7 M_{\odot}$)
RMS	FWHM	$1807.96\substack{+181.10\\-184.40}$	$4.67\substack{+0.98 \\ -0.90}$
RMS	σline	$1076.33\substack{+66.19\\-72.19}$	$6.7\substack{+0.84 \\ -0.86}$
Mean	FWHM	$2094.61\substack{+208.66\\-235.08}$	$6.28\substack{+1.34 \\ -1.36}$
Mean	σline	$1334.32^{+127.22}_{-123.92}$	$10.17\substack{+2.03 \\ -1.80}$

The source follows the relation of luminosity vs BLR size.

$$\mathsf{NTD} = \mathsf{L}_{\mathsf{O}}/\mathsf{L}_{\mathsf{P}}, \mathsf{L}_{\mathsf{O}} = \mathsf{L}_{\mathsf{D}} + \mathsf{L}_{\mathsf{J}}$$

L_D = disk luminosity

L_J = jet luminosity

 L_{p} = predicted disk luminosity = L_{D}

The measured L_{5100} is a combination of non-thermal emission from the jet and thermal emission from the accretion disk.

- The BLR size in light days is ~ 77.9^{+9.1}_{-5.9}.
 The mean L₅₁₀₀ of 5.8X10⁴⁴ ergs s⁻¹.
 The Blackhole mass is estimated as $6.7 \times 10^7 M_{\odot}$.
- The measured L₅₁₀₀ is affected by the non-thermal emission.

THANK YOU!

Shivangipandey@aries.res.in